2024 |
Lowenthal-Raz, J., Liebermann, D. G., Friedman, J., & Soroker, N. (2024). Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke. Sci Rep, 14(1), 11971.
Abstract: Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
|
|
Tamir-Ostrover, H., Hassin-Baer, S., Fay-Karmon, T., & Friedman, J. (2024). Quantifying Changes in Dexterity as a Result of Piano Training in People with Parkinson's Disease. Sensors (Basel), 24(11).
Abstract: People with Parkinson's disease often show deficits in dexterity, which, in turn, can lead to limitations in performing activities of daily life. Previous studies have suggested that training in playing the piano may improve or prevent a decline in dexterity in this population. In this pilot study, we tested three participants on a six-week, custom, piano-based training protocol, and quantified dexterity before and after the intervention using a sensor-enabled version of the nine-hole peg test, the box and block test, a test of finger synergies using unidimensional force sensors, and the Quantitative Digitography test using a digital piano, as well as selected relevant items from the motor parts of the MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Parkinson's Disease Questionnaire (PDQ-39) quality of life questionnaire. The participants showed improved dexterity following the training program in several of the measures used. This pilot study proposes measures that can track changes in dexterity as a result of practice in people with Parkinson's disease and describes a potential protocol that needs to be tested in a larger cohort.
|
|
Wilf, M., Korakin, A., Bahat, Y., Koren, O., Galor, N., Dagan, O., et al. (2024). Using virtual reality-based neurocognitive testing and eye tracking to study naturalistic cognitive-motor performance. Neuropsychologia, 194, 108744.
Abstract: Natural human behavior arises from continuous interactions between the cognitive and motor domains. However, assessments of cognitive abilities are typically conducted using pen and paper tests, i.e., in isolation from “real life” cognitive-motor behavior and in artificial contexts. In the current study, we aimed to assess cognitive-motor task performance in a more naturalistic setting while recording multiple motor and eye tracking signals. Specifically, we aimed to (i) delineate the contribution of cognitive and motor components to overall task performance and (ii) probe for a link between cognitive-motor performance and pupil size. To that end, we used a virtual reality (VR) adaptation of a well-established neurocognitive test for executive functions, the 'Color Trails Test' (CTT). The VR-CTT involves performing 3D reaching movements to follow a trail of numbered targets. To tease apart the cognitive and motor components of task performance, we included two additional conditions: a condition where participants only used their eyes to perform the CTT task (using an eye tracking device), incurring reduced motor demands, and a condition where participants manually tracked visually-cued targets without numbers on them, incurring reduced cognitive demands. Our results from a group of 30 older adults (>65) showed that reducing cognitive demands shortened completion times more extensively than reducing motor demands. Conditions with higher cognitive demands had longer target search time, as well as decreased movement execution velocity and head-hand coordination. We found larger pupil sizes in the more cognitively demanding conditions, and an inverse correlation between pupil size and completion times across individuals in all task conditions. Lastly, we found a possible link between VR-CTT performance measures and clinical signatures of participants (fallers versus non-fallers). In summary, performance and pupil parameters were mainly dependent on task cognitive load, while maintaining systematic interindividual differences. We suggest that this paradigm opens the possibility for more detailed profiling of individual cognitive-motor performance capabilities in older adults and other at-risk populations.
|
|
2023 |
Geller, N., Moringen, A., & Friedman, J. (2023). Learning juggling by gradually increasing difficulty vs. learning the complete skill results in different learning patterns. Front Psychol, 14, 1284053.
Abstract: Motor learning is central to sports, medicine, and other health professions as it entails learning through practice. To achieve proficiency in a complex motor task, many hours of practice are required. Therefore, finding ways to speed up the learning process is important. This study examines the impact of different training approaches on learning three-ball cascade juggling. Participants were assigned to one of two groups: practicing by gradually increasing difficulty and elements of the juggling movement (“learning in parts”) or training on the complete skill from the start (“all-at-once”). Results revealed that although the all-at-once group in the early stages of learning showed greater improvement in performance, the “learning in parts” group managed to catch up, even over a relatively short period of time. The lack of difference in performance between the groups at the end of the training session suggests that the choice of training regime (between all-at-once and learning in parts), at least in the short term, can be selected based on other factors such as the learner's preference, practical considerations, and cognitive style.
|
|
Mimouni-Bloch, A., Shaklai, S., Levin, M., Ingber, M., Karolitsky, T., Grunbaum, S., et al. (2023). Developmental and acquired brain injury have opposite effects on finger coordination in children. Front. Hum. Neurosci., 17, 1083304.
|
|
Prushansky, T., Kaplan-Gadasi, L., & Friedman, J. (2023). The relationship between thoracic posture and ultrasound echo intensity of muscles spanning this region in healthy men and women. Physiother Theory Pract, 39(6), 1257–1265.
Abstract: PURPOSE: Skeletal muscle echogenicity intensity (EI) is considered a measure of muscle quality, being associated with old age and pathologies. Whether EI variations can be identified in healthy adults, due to habitual shortened or elongated muscle position is unknown. Thus, this study aimed to assess the relationship between thoracic kyphosis angulation and EI scores of muscles spanning this region ((Lower Trapezius (LT), Rhomboid Major (RM), Erector Spine (ES)) in healthy young people and in addition to examine the relationship between the change in thoracic kyphosis angle from relaxed to upright position (� degrees ) and the EI of these muscles. METHODS: Thoracic kyphosis in relaxed and erect standing was measured using a digital inclinometer in 29 healthy adults (16 women, 13 men), aged 25-35 years. The thoracic kyphosis angles including the difference between relaxed and erect postures (� degrees ) were correlated to the EI scores of right and left LT, RM and ES. RESULTS: No significant differences in EI were found between the 3 muscles EI or between sides, hence they were pooled together to a total thoracic EI score (TTEI). Although the TTEI did not correlate with relaxed or erect thoracic kyphosis, it was significantly but negatively correlated with � degrees in the entire group: Pearson's correlation coefficient of r = -0.544; p = .01 and in men; r = -0.732; p = .01, failing to reach significance in women; r = -0.457. CONCLUSION: The negative association between the EI of the explored muscles and � degrees could imply a possible relationship between these muscles range of movement excursions and their composition.
|
|
2022 |
Friedman, J., Amiaz, A., & Korman, M. (2022). The online and offline effects of changing movement timing variability during training on a finger-opposition task. Sci Rep, 12(1), 13319.
Abstract: In motor learning tasks, there is mixed evidence for whether increased task-relevant variability in early learning stages leads to improved outcomes. One problem is that there may be a connection between skill level and motor variability, such that participants who initially have more variability may also perform worse on the task, so will have more room to improve. To avoid this confound, we experimentally manipulated the amount of movement timing variability (MTV) during training to test whether it improves performance. Based on previous studies showing that most of the improvement in finger-opposition tasks comes from optimizing the relative onset time of the finger movements, we used auditory cues (beeps) to guide the onset times of sequential movements during a training session, and then assessed motor performance after the intervention. Participants were assigned to three groups that either: (a) followed a prescribed random rhythm for their finger touches (Variable MTV), (b) followed a fixed rhythm (Fixed control MTV), or (c) produced the entire sequence following a single beep (Unsupervised control MTV). While the intervention was successful in increasing MTV during training for the Variable group, it did not lead to improved outcomes post-training compared to either control group, and the use of fixed timing led to significantly worse performance compared to the Unsupervised control group. These results suggest that manipulating MTV through auditory cues does not produce greater learning than unconstrained training in motor sequence tasks.
|
|
Swissa, Y., Hacohen, S., Friedman, J., & Frenkel-Toledo, S. (2022). Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women. Sci Rep, 12, 11117.
Abstract: The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.
|
|
Thorpe, A., Friedman, J., Evans, S., Nesbitt, K., & Eidels, A. (2022). Mouse Movement Trajectories as an Indicator of Cognitive Workload. International Journal of Human-Computer Interaction, 38(15), 1464–1479.
Abstract: Assessing the cognitive impact of user interfaces is a shared focus of human-computer interaction researchers and cognitive scientists. Methods of cognitive assessment based on data derived from the system itself, rather than external apparatus, have the potential to be applied in a range of scenarios. The current study applied methods of analyzing kinematics to mouse movements in a computer-based task, alongside the detection response task, a standard workload measure. Sixty-five participants completed a task in which stationary stimuli were tar;geted using a mouse, with a within-subjects factor of task workload based on the number of targets to be hovered over with the mouse (one/two), and a between-subjects factor based on whether both targets (exhaustive) or just one target (minimum-time) needed to be hovered over to complete a trial when two targets were presented. Mouse movement onset times were slower and mouse movement trajectories exhibited more submovements when two targets were presented, than when one target was presented. Responses to the detection response task were also slower in this condition, indicating higher cognitive workload. However, these differences were only found for participants in the exhaustive condition, suggesting those in the minimum-time condition were not affected by the presence of the second target. Mouse movement trajectory results agreed with other measures of workload and task performance. Our findings suggest this analysis can be applied to workload assessments in real-world scenarios.
|
|
2021 |
Bezalel, G., Nachoum Arad, G., Plotnik, M., & Friedman, J. (2021). Voluntary step execution in patients with knee osteoarthritis: Symptomatic vs. non-symptomatic legs. Gait Posture, 83, 60–66.
Abstract: BACKGROUND: Individuals with osteoarthritis fall at a greater rate than the general population, likely as a result of weakness, pain, movement limitations, and a decline in balance. Due to the high prevalence of osteoarthritis in the population, understanding the mechanisms leading to greater fall risk is an important issue to better understand. RESEARCH QUESTION: What is the influence of unilateral knee osteoarthritis on the characteristics of performing a voluntary step (i.e., similar to that performed to avoid a fall after a perturbation), compared to healthy age-matched controls? METHODS: Case-control study performed in a Health maintenance organization physical therapy clinic. The research group consisted of a referred sample of 21 patients with unilateral knee osteoarthritis. The control group consisted of 22 age-matched healthy individuals. All participants were over 65 years of age. Participants were excluded if they had a surgical procedure to back or lower limb within one year before testing, oncological or neurological disease or a deficit in tactile sense. Movements were performed with and without dual tasking. MEASUREMENTS: Duration of the initiation phase (cue to step initiation), preparatory phase (step initiation to foot off) and swing phase (foot off to foot contact). RESULTS: In the preparatory phase and swing phase, the osteoarthritis group moved more slowly than the control group, and these differences were larger for forward compared to backward movements. Dual-tasking slowed responses in the pre-movement initiation stage across groups. SIGNIFICANCE: The differences in basic parameters, and the slower movements in the osteoarthritis group, are consistent with known features of osteoarthritis, being a disease commonly regarded as primarily “mechanical”, and are likely to increase fall risk. These response deficits suggest we should take advantage of advanced rehabilitation techniques, including cognitive loading, to help prevent falls in older adults with osteoarthritis.
|
|
Cantergi, D., Awasthi, B., & Friedman, J. (2021). Moving objects by imagination? Amount of finger movement and pendulum length determine success in the Chevreul pendulum illusion. Human Movement Science, 80, 102879.
|
|
Krasovsky, T., Keren-Capelovitch, T., Friedman, J., & Weiss, P. L. (2021). Self-feeding kinematics in an ecological setting: typically developing children and children with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng, 29, 1462–1469.
Abstract: Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS: Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS: Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS: The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon.
|
|
Lerner, O., Friedman, J., & Frenkel-Toledo, S. (2021). The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. J NeuroEngineering Rehabil, 18, 103.
|
|
Steinhart, S., Weiss, P. L., & Friedman, J. (2021). Proximal and distal movement patterns during a graphomotor task in typically developing children and children with handwriting problems. J Neuroeng Rehabil, 18(1), 178.
Abstract: BACKGROUND: Therapists specializing in handwriting difficulties in children often address motor problems including both proximal and distal movements in the upper extremity. Kinematic measures can be used to investigate various aspects of handwriting. This study examined differences in movement patterns in proximal and distal joints of the upper extremity during graphomotor tasks between typically developing children with and without handwriting problems. Additionally, it explored relationships between movement patterns, speed, and legibility of writing. METHODS: Forty-one children, aged 7-11 years, were assessed with the Aleph Aleph Ktav Yad Hebrew Handwriting assessment and the Beery Test of Visual Motor Integration and, based on their scores, were divided into a research group (with handwriting difficulties) and a control group (without handwriting difficulties). Upper extremity joint movement patterns were analyzed with a motion capture system. Differences in the quality of shapes traced and copied on a graphics tablet positioned horizontally and vertically were compared. Between-group differences and relationships with speed and legibility were analyzed. RESULTS: In both groups, there was greater movement in the distal compared to the proximal joints, greater movement when performing the task in a horizontal compared to a vertical plane, and greater movement when tracing than copying. Joint movements in the arm executed scaled-down versions of the shapes being drawn. While the amount of joint displacement was similar between groups, children in the research group showed greater dissimilarity between the drawn shape and the shape produced by the proximal joints. Finally, the drawing measure on the tablet was a significant predictor of legibility, speed of writing, visual motor integration and motor coordination, whereas the dissimilarity measure of joint movement was a significant predictor of speed of writing and motor coordination. CONCLUSIONS: This study provides support for the role of the distal upper extremity joints in the writing process and some guidance to assist clinicians in devising treatment strategies for movement-related handwriting problems. While we observed differences in proximal joint movements between the children with and without handwriting difficulties, the extent to which they are responsible for the differences in drawing quality remains to be determined. Further studies should use a similar methodology to examine additional tasks such as drawing shapes of varying sizes.
|
|
2020 |
Kaufman-Cohen, Y., Levanon, Y., Friedman, J., Yaniv, Y., & Portnoy, S. (2020). Home exercise in the dart-throwing motion plane after distal radius fractures: A Pilot Randomized Controlled Trial. Journal of Hand Therapy, .
|
|
Krasovsky, T., Weiss, P. L., Zuckerman, O., Bar, A., Keren-Capelovitch, T., & Friedman, J. (2020). DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding. Sensors (Basel), 20(7).
Abstract: Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.
|
|
Salzer, Y., & Friedman, J. (2020). Reaching trajectories unravel modality-dependent temporal dynamics of the automatic process in the Simon task: a model-based approach. Psychol Res, 84(6), 1700–1713.
Abstract: The Simon effect represents a phenomenon in which the location of the stimuli affects the speed and accuracy of the response, despite being irrelevant for the task demands. This is believed to be due to an automatic activation of a response corresponding to the location of the stimuli, which conflicts with the controlled decision process based on relevant stimuli features. Previously, differences in the nature of the Simon effect (i.e., the pattern of change of the effect across the distribution of response times) between visual and somatosensory stimuli were reported. We hypothesize that the temporal dynamics of visual and somatosensory automatic and controlled processes vary, thus driving the reported behavioral differences. While most studies have used response times to study the underlying mechanisms involved, in this study we had participants reach out to touch the targets and recorded their arm movements using a motion capture system. Importantly, the participants started their movements before a final decision was made. In this way, we could analyze the movements to gain insights into the competition between the automatic and controlled processes. We used this technique to describe the results in terms of a model assuming automatic activation due to location-based evidence, followed by inhibition. We found that for the somatosensory Simon effect, the decay of the automatic process is significantly slower than for the visual Simon effect, suggesting quantitative differences in this automatic process between the visual and somatosensory modalities.
|
|
Zacks, O., & Friedman, J. (2020). Analogies can speed up the motor learning process. Sci Rep, 10(1), 6932.
Abstract: Analogies have been shown to improve motor learning in various tasks and settings. In this study we tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. Kinematic measures were used to quantify participant's skill and learning dynamics. For this purpose, we used a drawing task, in which subjects drew lines to connect dots, and a mirror game, in which subjects tracked a moving stimulus. After establishing a baseline, subjects were given an analogy, explicit instructions or no further instruction. We compared their improvement in skill (quantified by coarticulation or smoothness), accuracy and movement duration. Subjects in the analogy and explicit groups improved their coarticulation in the target task, while significant differences were found in the mirror game only at a slow movement frequency between analogy and controls.We conclude that a verbal analogy can be a useful tool for rapidly changing motor kinematics and movement strategy in some circumstances, although in the tasks selected it did not produce better performance in most measurements than explicit guidance. Furthermore, we observed that different movement facets may improve independently from others, and may be selectively affected by verbal instructions. These results suggest an important role for the type of instruction in motor learning.
|
|
2019 |
Dempsey-Jones, H., Wesselink, D. B., Friedman, J., & Makin, T. R. (2019). Organized Toe Maps in Extreme Foot Users. Cell Reports, 28(11), 2748–2756.e4.
Abstract: Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience.
|
|
Ezrati, O., Friedman, J., & Dar, R. (2019). Attenuation of access to internal states in high obsessive-compulsive individuals might increase susceptibility to false feedback: Evidence from a visuo-motor hand-reaching task. Journal of Behavior Therapy and Experimental Psychiatry, 65, 101445.
Abstract: Background and objectives
The Seeking Proxies for Internal States (SPIS) model of obsessive-compulsive disorder (OCD) posits that obsessive-compulsive (OC) individuals have attenuated access to their internal states. Hence, they seek and rely on proxies, or discernible substitutes for these internal states. In previous studies, participants with high OC tendencies and OCD patients, compared to controls, showed increased reliance on external proxies and were more influenced by false feedback when judging their internal states. This study is the first to examine the effects of false feedback on performance of hand movements in participants with high and low OC tendencies.
Method
Thirty-four participants with high OC tendencies and 34 participants with low OC tendencies were asked to perform accurate hand reaches without visual feedback in two separate sessions of a computerized hand-reaching task: once after valid feedback training of their hand location and once with false-rotated feedback. We assessed the accuracy and directional adaptation of participants' reaches.
Results
As predicted, high OC participants evidenced a larger decrease in their hand positioning accuracy after training with false feedback compared to low OC participants.
Limitations
The generalization of our findings to OCD requires replication with a clinical sample.
Conclusions
These results suggest that in addition to self-perceptions, motor performance of OC individuals is prone to be overly influenced by false feedback, possibly due to attenuated access to proprioceptive cues. These findings may be particularly relevant to understanding the distorted sense of agency in OCD.
|
|
Frenkel-Toledo, S., Yamanaka, J., Friedman, J., Feldman, A. G., & Levin, M. F. (2019). Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study. Exp Brain Res, 237(7), 1655–1672.
Abstract: To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.
|
|
Friedman, J., & Korman, M. (2019). Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice. Sci Rep, 9(1), 4609.
Abstract: We tested how observation of a skilled pattern of planar movements can assist in the learning of a new motor skill, which otherwise requires rigorous long-term practice to achieve fast and smooth performance. Sixty participants performed a sequence of planar hand movements on pre-test, acquisition, post-test and 24 h post-training blocks, under 1 of 4 conditions: an observation group (OG), a slowed observation group (SOG), a random motion control group (RMCG) and a double physical training control group (DPTCG). The OG and SOG observed an expert model's right hand performing the study task intermittently throughout acquisition, RMCG observed random dots movement instead of a model. Participants in the DPTCG received extra physical practice trials instead of the visually observed trials. Kinematic analysis revealed that only in conditions with observation of an expert model there was an instant robust improvement in motor planning of the task. This step-wise improvement was not only persistent in post-training retests but was also apparently implicit and subject to further incremental improvements in movement strategy over the period of 24 hours. The rapid change in motor strategy was accompanied by a transient within-session increase in spatial error for the observation groups, but this went away by 24 h post-training. We suggest that observation of hand movements of an expert model coaligned with self-produced movements during training can significantly condense the time-course of ecologically relevant drawing/writing skill mastery.
|
|
Friedman, J., Raveh, E., Weiss, T., Itkin, S., Niv, D., Hani, M., et al. (2019). Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback (Vol. 147).
Abstract: The application of incongruent sensory signals that involves disrupted tactile feedback is rarely explored, specifically with the presence of vibrotactile feedback (VTF). This protocol aims to test the effect of VTF on the response to incongruent visual-tactile stimuli. The tactile feedback is acquired by grasping a block and moving it across a partition. The visual feedback is a real-time virtual presentation of the moving block, acquired using a motion capture system. The congruent feedback is the reliable presentation of the movement of the block, so that the subject feels that the block is grasped and see it move along with the path of the hand. The incongruent feedback appears as the movement of the block diverts from the actual movement path, so that it seems to drop from the hand when it is actually still held by the subject, thereby contradicting the tactile feedback. Twenty subjects (age 30.2 +/- 16.3) repeated 16 block transfers, while their hand was hidden. These were repeated with VTF and without VTF (total of 32 block transfers). Incongruent stimuli were presented randomly twice within the 16 repetitions in each condition (with and without VTF). Each subject was asked to rate the difficulty level of performing the task with and without the VTF. There were no statistically significant differences in the length of the hand paths and durations between transfers recorded with congruent and incongruent visual-tactile signals – with and without the VTF. The perceived difficulty level of performing the task with the VTF significantly correlated with the normalized path length of the block with VTF (r = 0.675, p = 0.002). This setup is used to quantify the additive or reductive value of VTF during motor function that involves incongruent visual-tactile stimuli. Possible applications are prosthetics design, smart sport-wear, or any other garments that incorporate VTF.
|
|
Kaufman-Cohen, Y., Portnoy, S., Levanon, Y., & Friedman, J. (2019). Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? J Mot Behav, , 1–10.
Abstract: Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs.
|
|
2018 |
Kaufman-Cohen, Y., Friedman, J., Levanon, Y., Jacobi, G., Doron, N., & Portnoy, S. (2018). Wrist Plane of Motion and Range During Daily Activities. Am J Occup Ther, 72(6), 1–10.
Abstract: OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).
METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.
RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.
CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).
METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.
RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.
CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.
|
|
Portnoy, S., Mimouni-Bloch, A., Rosenberg, L., Offek, H., Berman, T., Kochavi, M., et al. (2018). Graphical Product Quality and Muscle Activity in Children With Mild Disabilities Drawing on a Horizontally or Vertically Oriented Tablet. Am J Occup Ther, 72(6), 1–7.
Abstract: OBJECTIVE. We compared performance level and muscle activity patterns during shape copying and tracing in two positions, while sitting at a desk and while standing in front of a wall, between typically developing (TD) preschool children and children with mild disabilities (MD).
METHOD. Twenty-two TD children (8 boys, 14 girls; mean [M] age 5 5.2 yr, standard deviation [SD] 5 0.1) and 13 children with MD (9 boys, 4 girls; M age 5 4.9 yr, SD 5 0.5) participated in this study.
RESULTS. The children performed faster and smoother movements when copying shapes on the vertical surface, with no reduction of accuracy, than on the horizontal surface. Children with MD exerted their upper trapezius while performing the short tasks on the vertical surface compared with their muscle activity on the horizontal surface.
CONCLUSION. Incorporating short copying or drawing tasks on a vertical surface may increase the control of proximal muscles and ease graphomotor performance in children with MD.
|
|
Raveh, E., Friedman, J., & Portnoy, S. (2018). Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm. Clin Rehabil, 99(11), 2263–2270.
Abstract: Objective: To evaluate the effects of adding vibrotactile feedback to myoelectric prosthesis users on the performance time and visual attention in a dual-task paradigm.
Design: A repeated-measures design with a counterbalanced order of two conditions.
Setting: Laboratory setting.
Subjects: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age=65 ± 13 years). Exclusion criteria were orthopedic or neurologic problems.
Interventions: Subjects performed grasping tasks with their prosthesis, while controlling a virtual car on a road with their intact hand. The dual task was performed twice: with and without vibrotactile feedback.
Main measures: Performance time of each of the grasping tasks and gaze behavior, measured by the number of times the subjects shifted their gaze toward their hand, the relative time they applied their attention to the screen, and percentage of error in the secondary task.
Results: The mean performance time was significantly shorter (P=0.024) when using vibrotactile feedback (93.2 ± 9.6 seconds) compared with the performance time measured when vibrotactile feedback was not available (107.8 ± 20.3seconds). No significant differences were found between the two conditions in the number of times the gaze shifted from the screen to the hand, in the time the subjects applied their attention to the screen, and in the time the virtual car was off-road, as a percentage of the total game time
(51.4 ± 15.7 and 50.2 ± 19.5, respectively).
Conclusion: Adding vibrotactile feedback improved performance time during grasping in a dual-task paradigm. Prosthesis users may use vibrotactile feedback to perform better during daily tasks, when multiple cognitive demands are present.
|
|
Raveh, E., Friedman, J., & Portnoy, S. (2018). Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assistive Technology, 30, 274–280.
|
|
Raveh, E., Portnoy, S., & Friedman, J. (2018). Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Hum Mov Sci, 58, 32–40.
Abstract: We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback – one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable.
|
|
Raveh, E., Portnoy, S., & Friedman, J. (2018). Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed. Arch Phys Med Rehabil, 99(11), 2263–2270.
Abstract: OBJECTIVE: To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed. DESIGN: A repeated-measures design with a counter-balanced order of 3 conditions. SETTING: Laboratory setting. PARTICIPANTS: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65+/-13y). Exclusion criteria were orthopedic or neurologic problems. INTERVENTIONS: All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF. MAIN OUTCOME MEASURES: Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand. RESULTS: Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops). CONCLUSIONS: Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.
|
|
2017 |
Noy, L., Weiser, N., & Friedman, J. (2017). Synchrony in Joint Action Is Directed by Each Participant's Motor Control System. Front. Psychol., 8, 531.
Abstract: In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.
|
|
Shaklai, S., Mimouni-Bloch, A., Levin, M., & Friedman, J. (2017). Development of finger force coordination in children. Experimental Brain Research, 235(12), 3709–3720.
Abstract: Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.
|
|
2016 |
Awasthi, B., Williams, M. A., & Friedman, J. (2016). Examining the role of red background in magnocellular contribution to face perception. PeerJ, 4, e1617.
Abstract: This study examines the role of the magnocellular system in the early stages of face perception, in particular sex categorization. Utilizing the specific property of magnocellular suppression in red light, we investigated visually guided reaching to low and high spatial frequency hybrid faces against red and grey backgrounds. The arm movement curvature measure shows that reduced response of the magnocellular pathway interferes with the low spatial frequency component of face perception. This finding provides behavioral evidence for magnocellular contribution to non-emotional aspect of face perception.
|
|
Friedman, J., & Korman, M. (2016). Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference. Front. Hum. Neurosci., 10, 623.
Abstract: Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.
|
|
2015 |
Noy, L., Alon, U., & Friedman, J. (2015). Corrective jitter motion shows similar individual frequencies for the arm and the finger. Exp Brain Res, 233(4), 1307–1320.
Abstract: A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes.
|
|
Portnoy, S., Rosenberg, L., Alazraki, T., Elyakim, E., & Friedman, J. (2015). Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces. Journal of Electromyography and Kinesiology, 25(3), 540�547.
Abstract: The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders.
|
|
Zopf, R., Friedman, J., & Williams, M. A. (2015). The plausibility of visual information for hand ownership modulates multisensory synchrony perception. Experimental Brain Research, 233(8), 2311–2321.
Abstract: We are frequently changing the position of our bodies and body parts within complex environments. How does the brain keep track of one’s own body? Current models of body ownership state that visual body ownership cues such as viewed object form and orientation are combined with multisensory information to correctly identify one’s own body, estimate its current location and evoke an experience of body ownership. Within this framework, it may be possible that the brain relies on a separate perceptual analysis of body ownership cues (e.g. form, orientation, multisensory synchrony). Alternatively, these cues may interact in earlier stages of perceptual processing—visually derived body form and orientation cues may, for example, directly modulate temporal synchrony perception. The aim of the present study was to distinguish between these two alternatives. We employed a virtual hand set-up and psychophysical methods. In a two-interval force-choice task, participants were asked to detect temporal delays between executed index finger movements and observed movements. We found that body-specifying cues interact in perceptual processing. Specifically, we show that plausible visual information (both form and orientation) for one’s own body led to significantly better detection performance for small multisensory asynchronies compared to implausible visual information. We suggest that this perceptual modulation when visual information plausible for one’s own body is present is a consequence of body-specific sensory predictions.
|
|
2014 |
Park, J., Pazin, N., Friedman, J., Zatsiorsky, V. M., & Latash, M. L. (2014). Mechanical properties of the human hand digits: Age-related differences. Clinical Biomechanics, 29(2), 129–137.
Abstract: Background
Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults.
Methods
Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data.
Findings
Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups.
Interpretations
The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object.
|
|
2013 |
Awasthi, B., Sowman, P. F., Friedman, J., & Williams, M. A. (2013). Distinct spatial scale sensitivities for early categorisation of Faces and Places: Neuromagnetic and Behavioural Findings. Frontiers in Human Neuroscience, 7(91).
Abstract: Research exploring the role of spatial frequencies in rapid stimulus detection and categorisation report flexible reliance on specific spatial frequency bands. Here, through a set of behavioural and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF)(25 cpf) information during the categorisation of faces and places. Reaction time measures revealed significantly faster categorisation of faces driven by LSF information, while rapid categorisation of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that spatial frequency modulates the processing of category specific information for faces and places.
|
|
Friedman, J., Brown, S., & Finkbeiner, M. (2013). Linking cognitive and reaching trajectories via intermittent movement control. Journal of Mathematical Psychology, 57(3-4), 140–151.
Abstract: Theories of decision-making have traditionally been constrained by reaction time data. A limitation of reaction time data, particularly for studying the temporal dynamics of cognitive processing, is that they index only the endpoint of the decision making process. Recently, physical reaching trajectories have been used as proxies for underlying mental trajectories through decision space. We suggest that this approach has been oversimplified: while it is possible for the motor control system to access the current state of the evidence accumulation process, this access is intermittent. Instead, we demonstrate how a model of arm movements that assumes intermittent, not continuous, access to the decision process is sufficient to describe the effects of stimulus quality and viewing time in curved reaching movements.
|
|
2012 |
Awasthi, B., Friedman, J., & Williams, M. A. (2012). Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia. Cognitive Neuroscience, 3(2), 120–130.
Abstract: Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.
|
|
Friedman, J., & Korman, M. (2012). Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training. PLoS One, 7(12), e52063.
Abstract: Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.
|
|
2011 |
Awasthi, B., Friedman, J., & Williams, M. (2011). Faster, stronger, lateralized: Low spatial frequency information supports face processing. Neuropsychologia, 49(13), 3583–3590.
Abstract: Distinct visual pathways are selectively tuned for processing specific spatial frequencies. Recently, Awasthi, Friedman and Williams (2011) reported fast categorisation of faces at periphery, arguing for primacy of low spatial frequency (LSF) information in face processing. However, previous studies have also documented rapid categorization of places and natural scenes. Here, we tested if the LSF advantage is face specific or also involved in place perception. We used visually guided reaching as a continuous behavioral measure to examine the processing of LSF and high spatial frequency (HSF) hybrids, presented at the periphery. Subjects reached out and touched targets and their movements were recorded. The trajectories revealed that LSF interference was both 95 ms earlier and stronger for faces than places and was lateralized to the left visual field. The early processing of LSF information supports the assumption that faces are prioritised and provides a (neural) framework for such specialised processing.
|
|
Awasthi, B., Friedman, J., & Williams, M. A. (2011). Processing of low spatial frequency faces at periphery in choice reaching tasks. Neuropsychologia, 49(7), 2136–2141.
Abstract: Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF–HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway.
|
|
Finkbeiner, M., & Friedman, J. (2011). The flexibility of nonconsciously deployed cognitive processes: Evidence from masked congruence priming. PLoS ONE, 6(2), e17095.
Abstract: Background
It is well accepted in the subliminal priming literature that task-level properties modulate nonconscious processes. For example, in tasks with a limited number of targets, subliminal priming effects are limited to primes that are physically similar to the targets. In contrast, when a large number of targets are used, subliminal priming effects are observed for primes that share a semantic (but not necessarily physical) relationship with the target. Findings such as these have led researchers to conclude that task-level properties can direct nonconscious processes to be deployed exclusively over central (semantic) or peripheral (physically specified) representations.
Principal Findings
We find distinct patterns of masked priming for “novel” and “repeated” primes within a single task context. Novel primes never appear as targets and thus are not seen consciously in the experiment. Repeated primes do appear as targets, thereby lending themselves to the establishment of peripheral stimulus-response mappings. If the source of the masked priming effect were exclusively central or
peripheral, then both novel and repeated primes should yield similar patterns of priming. In contrast, we find that both novel and repeated primes produce robust, yet distinct, patterns of priming.
Conclusions
Our findings indicate that nonconsciously elicited cognitive processes can be flexibly deployed over both central and peripheral representations within a single task context. While we agree that task level properties can influence nonconscious processes, our findings sharply constrain the extent of this influence. Specifically, our findings are inconsistent with extant accounts which hold that the influence of task-level properties is strong enough to restrict the deployment of nonconsciously elicited cognitive processes to a single type of representation (i.e. central or peripheral).
|
|
Friedman, J., Latash, M. L., & Zatsiorsky, V. M. (2011). Directional variability of the isometric force vector produced by the hand in multi-joint planar tasks. Journal of Motor Behavior, 43(6), 451–463.
Abstract: Numerous studies have examined control of force magnitude, but relatively little research has considered force direction control. In this study, subjects applied isometric forces to a handle and we compared within-trial variability when producing force in different directions. The standard deviation (SD) of the force parallel to the prescribed direction of force production increased linearly with the targeted force level, as did the SD of the force perpendicular to the instructed direction. In contrast, the SD of the angle of force production decreased with increased force level. In the four (of eight) instructed force directions where the endpoint force was generated due to a joint torque in only one joint (either the shoulder or elbow) the principal component axes in force space were well aligned with the prescribed direction of force production. In the other directions, the variance was approximately equal along the two force axes. The variance explained by the first principal component was significantly larger in torque space compared to the force space, and mostly corresponded to positive correlation between the joint torques. Such coordinated changes suggest that the torque variability was mainly due to the variability of the common drive to the muscles serving two joints, although this statement needs to be supported by direct studies of muscle activation in the future.
|
|
Nahab, F., Kundu, P., Gallea, C., Kakareka, J., Pursley, R., Pohida, T., et al. (2011). The neural processes underlying self-agency. Cerebral Cortex, 21(1), 48–55.
Abstract: Self-agency (SA) is the individual’s perception that an action is the consequence of his/her own intention. The neural networks underlying SA are not well understood. We carried out a novel, ecologically valid, virtual-reality experiment using BOLD-fMRI where SA could be modulated in real-time while subjects performed voluntary finger movements. Behavioral testing was also performed to assess the explicit judgment of SA. Twenty healthy volunteers completed the experiment. Results of the behavioral testing demonstrated paradigm validity along with the identification of a bias that led subjects to over- or underestimate the amount of control they had. The fMRI experiment identified two discrete networks. These leading and lagging networks likely represent a spatial and temporal flow of information, with the leading network serving the role of mismatch detection and the lagging network receiving this information and
mediating its elevation to conscious awareness, giving rise to SA.
|
|
Zopf, R., Truong, S., Finkbeiner, M., Friedman, J., & Williams, M. A. (2011). Viewing and feeling touch modulates hand position for reaching. Neuropsychologia, 49(5), 1287–1293.
Abstract: Action requires knowledge of our body location in space. Here we asked if interactions with the external world prior to a reaching action influence how visual location information is used. We investigated if the temporal synchrony between viewing and feeling touch modulates the integration of visual and proprioceptive body location information for action. We manipulated the synchrony between viewing and feeling touch in the Rubber Hand Illusion paradigm prior to participants performing a ballistic reaching task to a visually specified target. When synchronous touch was given, reaching trajectories were significantly shifted compared to asynchronous touch. The direction of this shift suggests that touch influences the encoding of hand position for action. On the basis of this data and previous findings, we propose that the brain uses correlated cues from passive touch and vision to update its own position for action and experience of self-location.
|
|
2010 |
Kapur, S., Friedman, J., Zatsiorsky, V. M., & Latash, M. L. (2010). Finger interaction in a three-dimensional pressing task. Experimental Brain Research, 203(1), 101–118.
Abstract: Accurate control of forces produced by the fingers is essential for performing object manipulation. This study examines the indices of finger interaction when accurate time profiles of force are produced in different directions, while using one of the fingers or all four fingers of the hand. We hypothesized that patterns of unintended force production among shear force components may involve features not observed in the earlier studies of vertical force production. In particular, we expected to see unintended forces generated by non-task fingers not in the
direction on the instructed force but in the opposite direction as well as substantial force production in directions orthogonal to the instructed direction. We also tested a hypothesis that multi-finger synergies, quantified using the framework of the uncontrolled manifold hypothesis, will help reduce across-trials variance of both total force magnitude and direction. Young, healthy subjects were required to produce accurate ramps of force in five different directions by
pressing on force sensors with the fingers of the right (dominant) hand. The index finger induced the smallest unintended forces in non-task fingers. The little finger showed the smallest unintended forces when it was a non-task finger. Task fingers showed substantial force production in directions orthogonal to the intended force direction. During four-finger tasks, individual force vectors typically pointed off the task direction, with these deviations nearly
perfectly matched to produce a resultant force in the task direction. Multi-finger synergy indices reflected strong co-variation in the space of finger modes (commands to fingers) that reduced variability of the total force magnitude and direction across trials. The synergy indices increased in magnitude over the first 30% of the trial time and then stayed at a nearly constant level. The synergy index for stabilization of total force magnitude was higher for shear force components as compared to the downward pressing force component. The results suggest complex interactions between enslaving and synergic force adjustments, possibly reflecting the experience with everyday prehensile tasks. For the first time, the data document multi-finger synergies stabilizing both shear force magnitude and force vector direction. These synergies may play a major role in
stabilizing the hand action during object manipulation.
|
|
Latash, M. L., Friedman, J., Kim, S.W., Feldman, A.G., Zatsiorsky, V.M. (2010). Prehension Synergies and Control with Referent Hand Configurations. Exp Brain Res, 202(1), 213–229.
Abstract: We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger level (virtual finger is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-virtual finger level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-virtual finger level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels.
|
|
2009 |
Friedman, J., & Flash, T. (2009). Trajectory of the index finger during grasping. Exp Brain Res, 196(4), 497–509.
Abstract: The trajectory of the index finger during grasping movements was compared to the trajectories predicted by three optimization-based models. The three models consisted of minimizing the integral of the weighted squared joint derivatives along the path (inertia-like cost), minimizing torque change, and minimizing angular jerk. Of the three models, it was observed that the path of the fingertip and the joint trajectories, were best described by the minimum angular jerk model. This model, which does not take into account the dynamics of the finger, performed equally well when the inertia of the finger was altered by adding a 20 g weight to the medial phalange. Thus, for the finger, it appears that trajectories are planned based primarily on kinematic considerations at a joint level.
|
|
Friedman, J., Latash, M. L., & Zatsiorsky, V. M. (2009). Prehension synergies: a study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object. Exp Brain Res, 197(1), 1–13.
Abstract: We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition, the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and VF but generating a moment of tangential force, which had to be compensated by negatively co-varying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force is non-obligatory and reflects individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase.
|
|
Friedman, J., SKM, V., Zatsiorsky, V. M., & Latash, M. L. (2009). The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. Exp Brain Res, 196(2), 263–277.
Abstract: In a multifinger cyclic force production task, the finger force variance measured across trials can be decomposed into two components, one that affects the combined force output (“bad variance”) and one that does not (“good variance”). Previous studies have found similar time patterns of “bad variance” and force rate leading to an approximately linear relationship between them. Based on this finding and a recently developed model of multifinger force production, we expected the “bad variance” during cyclic force production to increase monotonically with the rate of force change, both within a cycle and across trials at different frequencies. Alternatively, “bad variance” could show a dependence on task frequency, not on actual force derivative values. Healthy subjects were required to produce cyclic force patterns to prescribed targets by pressing on unidimensional force sensors, at a frequency set by a metronome. The task was performed with only the index finger, and with all four fingers. In the task with all four fingers, the “good variance” increased approximately linearly with an increase in the force magnitude. The “bad variance” showed within-a-cycle modulation similar to that of the force rate. However, an increase in the frequency did not lead to an increase in the “bad variance” that could be expected based on the natural relationships between action frequency and the rate of force change modulation. The results have been interpreted in the framework of an earlier model of multifinger force production where “bad variance” is a result of variance of the timing parameter. The unexpected lack of modulation of the “bad variance” with frequency suggests a drop in variance of the timing parameter with increased frequency. This mechanism may serve to maintain a constant acceptable level of variance under different conditions.
|
|
2007 |
Friedman, J., & Flash, T. (2007). Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex, 43(3), 444–460.
Abstract: Object manipulation with the hand is a complex task. The task has redundancies at many levels, allowing many possibilities for the selection of grasp points, the orientation and posture of the hand, the forces to be applied at each fingertip and the impedance properties of the hand. Despite this inherent complexity, humans perform object manipulation nearly effortlessly. This article presents experimental findings of how humans grasp and manipulate objects, and examines the compatibility of grasps selected for specific tasks. This is accomplished by looking at the velocity transmission and force transmission ellipsoids, which represent the transmission ratios of the corresponding quantity from the joints to the object, as well as the stiffness ellipsoid which represents the directional stiffness of the grasp. These ellipsoids allow visualization of the grasp Jacobian and grasp stiffness matrices. The results show that the orientation of the ellipsoids can be related to salient task requirements.
|
|
2006 |
Liebermann, D. G., Biess, A., Friedman, J., Gielen, C. C. A. M., & Flash, T. (2006). Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements. Exp Brain Res, 171(2), 139–154.
Abstract: This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements.
|
|